The Opportunities and Challenges of Selling Hydrogen to the Industry

July 1, 2025

Advanced Clean Tech News For the Commercial Transport Sector

Subscribe today at www.act-news.com/subscribe

Messy Middle Bootcamp Series

- Diesel Drop-In Alternatives: Ultra-Low Sulfur, Bio-, and Renewable (February 11th) V Decarbonizing with Natural Gas (February 25th)
 - Future Prices & Availability of Existing Infrastructure: What's Next? (March 11th)
 DIESEL AND NATURAL GAS WORKSHOP (March 25th)
 - The Current State of HD BEV: Technologies and Capabilities (April 8th)
 - 🐓 Strategizing Successful HD BEV Adoption (April 27th) 🗸
 - Charging Depots, Networks & the Economics of Fleet (May 6th) 🗸

HD BEV WORKSHOP (May 20th) 🗸

- The Production Processes of Hydrogen Fuel (June 3rd) 🗸
- Moving Hydrogen from Here to There: The Distribution and Storage of Hydrogen Fuel (June 17th)
- The Opportunities and Challenges of Selling Hydrogen to the Industry (July 1st)

HYDROGEN FUEL CELL WORKSHOP (July 15th)

2023 Bootcamp is still available at: https://runonless.com/electric-depot/

Update from the Run...

Follow the Fleets, Drivers, providers, and more on:

RunOnLess.com and on Twitter @RunOnLess

Today's Bootcamp Sponsor

Quiz for Today's Session

Completing Today's Quiz:

- Go to runonless.com and click back into the session
- Click 'Take Quiz' button
- Create username and password to keep track of your progress
- Provide your name and email to enter a drawing for a Run on Less -Messy Middle swag bag

What You Should Know

Q&A

Submit your questions to the host using the Q&A box in the upper right-hand corner

Recording

A recording of today's webinar will be available on runonless.com

Technical Issues

Contact Stephane Babcock at sbabcock@trccompanies.com

Today's Bootcamp Speakers

The Opportunities and Challenges of Selling Hydrogen to the Industry

Tarek Abdel-Baset Director of Business Development for Hydrogen Storage Systems FORVIA **Ben Happek** General Manager, Commercial Vehicles & Hydrogen Hyundai Motor America **Derek Rotz** Director in Advanced Engineering Daimler Truck North America **Hui Xu** Technical Project Leader Global H2 ICE Cummins

HYDROGEN STORAGE – FOR MOBILITY MESSY MIDDLE BOOT CAMP

TAREK ABDEL-BASET

JULY 1ST 2025

FORVIA: A GLOBAL AUTOMOTIVE TECHNOLOGY SUPPLIER

Business Groups **1 in 2** vehicles worldwide equipped with FORVIA products €27bn sales

€31bn order intake

150,000 employees

6

15,000 R&D engineers Ambition to become **#1** worldwide in Hydrogen solutions

A turnover multiplied by **10** since 2020

40% CAGR since 2022

Symbio FORVIA, Stellantis and Michelin company

FORVIA Inspiring mobility

All figures as of December 31, 2024

Why Fuel Cell Vehicles? The Crossover Point

FCV Benefits vs BEV

As vehicle energy requirement increases, FCV potential advantages include;

- Lower System Cost
 - For same kWh 0
 - Assuming high volumes (500k/yr) 0
- **Increased Payload Capacity**
 - Lower system weight (kW/kg) for same kWh
- Faster Charge time (<10mins)

TCO advantage with vehicles with high uptime duty cycles

- **Increased Range**
 - Higher volumetric energy (kWh/l)
- Improved packaging
 - Lower System Volume for same kWh
- **Potentially Lower Infrastructure Costs** \bullet
 - Highly dependent on local grid constraints and fleet size

faurecia

& Weight

Size

System Cost/ PT Sys.

Why Hydrogen?

- 1. H₂ is an excellent *Energy Buffer* for high power &/or energy demands :
 - Transportation, building feedstock, grid balancing etc.
 - Increased renewable energy production requires increased energy buffer in grids
 - Alternative to Electricity / Grid in difficult to decarbonize industries (Steel, Fertilizer Industrial heating etc)
 - Can account ~20% penetration into the energy grid
- 1. Multiple Pathways for H₂ Production and Delivery
 - Provides regional specific energy security flexibility/ solutions
 - Lower cost infrastructure solution vs new electrical grid installations in many scenarios

https://www.energy.gov/sites/prod/files/2019/09/f67/fcto-h2-at-scale-handout-2019.pdf

DIFFERENT TYPES OF HYDROGEN STORAGE

Many Different Ways to Store Hydrogen

• All have significant challenges in at least one key metric

Physical based systems

 Contain hydrogen in *"Diatomic* (H-H)" form as Gas or liquid - various pressures and temperatures

Materials Based Systems

 Store hydrogen in *"Monatomic H*⁺+ *H*⁺" Form Hydrogen is split and bound to other materials via weak or strong forces

HYDROGEN STORAGE - PHYSICAL STORAGE

Compressed Gas

Most OEMs launching on 700 bar (10,000 psi) systems "Type 4" tanks

- Carbon fiber outer wrapping + plastic inner liner
- 4-6 kgs of H₂ for 300- 350 miles on midsize vehicle

- Simplest of storage system options
- Fast filling
- Durable
- Safer than you think!
- Expensive (60% carbon fiber cost)
 - ~\$1000/kg today's tech & volumes
- Lowest energy density option
- Energy of compression significant efficiency loss in well to wheel pathway (upto 10-20% of energy value of H2)
 - 14 Run on Less Bootcamp July 2205

<u>Liquid</u>

- 2-3X system energy density of compressed gas 700 bar
- Very cold temps required 20K to keep in liquid state
- Significant insulation required

- Self "purifying fuel" by default achieves fuel purity requirements for FCs
- Low Pressure < 60 psi
- Evaporation "Boil Off" = loss of fuel
- Typically 1-2% per day
- Vehicle needs to be used daily to prevent boil off
- Energy of liquefaction worse than compressed (upto 20-30% of energy value of H₂)

Cryo Compressed

- 3-4X system energy density of compressed gas 700 bar
- Combination of pressure and low temperature

- Highest energy Density
- Self "purifying fuel" by default achieves fuel purity requirements for FCs
- System cost and compression/ liquefaction energy in between compressed & liquid
- Boil Off" still occurs but significantly delayed (20-40 days)
- Complicated system and infrastructure
- Inconsistent fill levels- dependent on how hot tank is at beginning of fill
 Fourecia

MODULAR & SCALABLE OFFER UP TO COMPLETE STORAGE SYSTEMS

MOBILITY

Tank equipped with valves

Storage system delivered in kit

Plug & play module

FORVIA PARTNERSHIPS ACROSS MOBILITY DISTRIBUTION AND VALUE CHAIN

Inspiring mobility

16 | Run on Less Bootcamp July 2205

INTERNAL & PARTNERS

THANKYOU

Cummins Hydrogen Internal Combustion Engine (H2-ICE)

Hui Xu Imon Uduehi

July 01 2025

Destination Zero, powered by Cummins

Climate change is an existential crisis. Our world will forever need power. We've made finding solutions to these twin challenges our responsibility. Destination Zero is the road we've paved to a zero emissions future where we continue to provide the power that our world needs.

Different Use Cases: Complementary Technologies

H₂ ICE – A Complementary Solution

- Spark ignited engine variant, similar to Natural Gas/Gasoline engine hardware
- Utilises existing installed capacity in engine and components manufacturing
- Extends life of internal combustion engine, complimentary with fuel cell.

Diesel	Hydrogen	Natural Gas/Gasoline		
Base engine (block, crank, auxiliaries, etc)				
Installation parts (mounts, flywheel housings, REPTO, pipework, etc)				
	Cylinder head (I	DOHC, VVA etc.)		
	Ignition	system		
	Engine control unit, and software			
	Fuel system			
	Air handling system			
Aftertreatment sy	stem – NH3-SCR			

H ₂ - Fuel Cell	H2-ICE	
H ₂ production		
H_2 distribution		
H_2 filling station availability		
On-board	H ₂ storage	
Needs electrification of driveline & accessories	Uses existing drivelines & accessories	
No aftertreatment	Requires aftertreatment	

H₂ ICE Architecture Considerations

Common between MD and HD

Cummins Hydrogen Engines

Engine	B6.7H	Х15Н
Displacement	6.7L	16L
Power	170 – 215 kW 230 – 290 hp	300 – 400 kW 400 – 530 hp
Torque	900 – 1100 Nm 650 – 810 ft lb	2100 – 2600 Nm 1550 – 1900 ft lb
Emission Level	Euro VII China NS VII EPA 2027 Stage V T4F	
Architecture	Pent Roof Cylinder Head, Tumble Combustion, Spark Ignited, Direct Inject, Lean Burn, SCR Aftertreatment	

Hydrogen ICE: Example Vehicle Specs

Target End User	get End User Large Fleet	
Vehicle	le Class 8 Sleeper Cab	
Fuel	Hydrogen	
Engine	X15H	
Displacement	16-liters	
Performance	450hp / 1850ft lbs	
Transmission	Endurant AMT	
Range	500 mi	
Base Warranty	2 Year / Unlimited Miles	
Durability	Same as diesel	
Vehicle Weight	2,500 lbs* more than diesel	

* Anticipated 2,000 lbs GVWR low carbon technology allowance from DOT. Cummins is working with the DOT to increase the allowance by 500 lbs.

More Information

www.cummins.com/engines/hydrogen

Contact Information

Imon Uduehi

General Manager - Alternate Fuels and Fuel Delivery Systems <u>imonitie.uduehi@cummins.com</u>

Hui Xu

Hydrogen Engine - Technical Project Leader hui.xu@cummins.com

BHYUNDAI

Hyundai XCIENT Fuel Cell Class 8 Truck Introduction Run on Less – Messy Middle Bootcamp #9 Dr. Benjamin Happek, General Manager, Energy & Hydrogen, HMNA

HTWO

& HYUNDAI 📓 🔊

USDOT 2875

HYUNDAI MEETS HYDROGEN TECHNOLOGY

26 years of R&D activities on fuel cell technology with the most diverse line-up of FCEVs

FIRST DEPLOYMENTS IN EUROPE SINCE 2020

- 49 trucks on the road
- More than 8.3 million mi in customer operation
- Technology works and is reliable
- FC system lasting longer than expected / calculated with
- Positive customer feedback:
 - ✓ Low noise & vibration
 - ✓ No breakdowns or quality issues
 - ✓ Excellent cold-weather performance

XCIENT FUEL CELL 6X4 TRACTOR

XCIENT FUEL CELL 2025 MY ENHANCEMENTS

Thoughtful new features and technologies to assist the driver

Wider command center

Everything you need to know without interrupting everything you need to see: the enlarged 12.3-inch cluster delivers all the essential information through sharp, easy-to-read graphics.

Switch-type USB module

It supports fast charging via a C-type USB port up to 27 W, features a simple switch to change modes, and offers two charging ports.

Revised front pillars (BCW indicator installed) The BCW & BCW_Near indicators are mounted on both front pillars for high visibility.

Intuitive 12.3-inch touchscreen AVN features physical buttons for optimal operability. It provides infotainment and seamlessly connects to your mobile device.

HVAC controller The HVAC control center is accessible through a new LCD. * HVAC: Heating, Ventilation, and Air Conditioning

Trailer air supply and parking brake switches Switches within easy reach.

NORCAL ZERO PROJECT

Zero-Emission Regional and Drayage Operations

H₂ Refueling Station

- Largest HD HRS in the World Capable of Filling 200 • **Class 8 Trucks per Day with Hydrogen**
- 20-minute Fill Time to Enable 430+ Miles of Range

Community Impact

- Improving Air Quality of Disadvantaged **Communities Around the Port of Oakland**
- Strong Community Engagement via the West **Oakland Environmental Indicators Project (WOEIP)**

H₂ Truck Deployment

CARB Chairwoman Liane M. Randolph with WOEIP Executive **Director Brian** Beveridge

- Largest Single Deployment of HD Trucks in the World: 30 Hyundai XCIENT Fuel Cell Tractors at the Port of Oakland
- 10 service technicians and 30+ operators trained
- Fleet Operator GET Freight is Serving 7 Customers Within a 150 mi Radius

GLOVIS

🕗 НҮШПДАІ

Construction underway for the industry's first high-volume Class-8 hydrogen refueling station in the U.S.

In collaboration with HTWO Logistics, HydroFleet's \$28M Pooler, GA Hydrogen Facility opens Q3 2025.

- \$28M+ invested in direct infrastructure to produce hydrogen fuel onsite.
- Facility will produce, store, and dispense hydrogen fuel for class 8 hydrogen heavy truck fleets & more.
- Location will feature "retail fueling station" design.
- Ability to supply and transport H2 fuel to regional hydrogen fleets with Port of Savannah and nearby railway.
- Existing demand already driving expansion of production output.

POOLER, GA - HYDROGEN PRODUCTION CAPACITY	
Initial H2 fuel production	1,200 kg daily
Future H2 fuel production	4,200 kg daily
Onsite hydrogen fuel storage	5,000 kg

High-Capacity Distribution Model

THANK YOU

的现在是是是是是

SUPERTRUCK Derek Rotz

FREIGHTLINER

DAIMLER TRUCK North America

Daimler Truck North America

SuperTruck III Outlook

DAIMLER TRUCK North America

DEMONSTRATE 2 Class 8 long-haul vehicles

RANGE of 600 miles without compromising payload or wheelbase

CELLCENTRIC fuel-cell system with power and high-voltage battery

FIRST PROTOTYPE (gaseous hydrogen) in 2025, final demonstrator (subcooled liquid hydrogen) in 2027

100 kg in LIQUID HYDROGEN, refueling time on par with Diesel

AMBITION Demonstrate the full potential of hydrogen

2 Vehicle Strategy

B-Sample

- Cab
- Chassis
- Tires / eAxle
- Fuel Cell System
- H₂ Tank Capacity
- Battery Capacity

R

R

- Cooling System
- Intent

- = 126" BBC, 72" Sleeper
- = 255" w/b Diesel based tractor
- = 315 tires / 6x2
- = Fuel Cell System behind cab
- = 700 Bar 30 kg CHG saddle tanks

к

- = 200 kWhr Battery
- > 300 kW heat rejection

Final Demonstrator

= 126" BBC, 72" Sleeper

• Cab

Chassis

• Intent

• Tires / eAxle

• Battery Capacity

Cooling System

- = 223" w/b Diesel based tractor
- = 315 Tires / new **6x4 eAxle**
- Fuel Cell System = NextGen fuel cell underhood
- H₂ Tank Capacity = **100 kg using sLH2**
 - < 100 kWhr Power battery
 - > 300 kW heat rejection
 - = Fleet feedback optimized

B-sample learnings drives final demonstrator design

Any proposed future work is subject to change based on funding levels.

The Opportunities and Challenges of Selling Hydrogen to the Industry

Tarek Abdel-Baset Director of Business Development for Hydrogen Storage Systems FORVIA **Ben Happek** General Manager, Commercial Vehicles & Hydrogen Hyundai Motor America **Derek Rotz** Director in Advanced Engineering Daimler Truck North America **Hui Xu** Technical Project Leader Global H2 ICE Cummins

Let's Stay Connected...

NACFE (& Spanish: <u>NACFE LATAM</u>)

@NACFE_Freight & @RunOnLess

NORTH AMERICAN COUNCIL FOR FREIGHT EFFICIENCY

NACFE.org

RunOnLess.com

